Sunday, 11 May 2014

MSVC C99 math.h header.

These days with Visual Studio 2013 (msvc12) being out, Microsoft has a proper C99 compliant math.h C header file. For anyone using any C99 math function I would first recommend you do so using msvc12. However recently I was working on a project that wanted to support older versions of msvc so I wrote up some compatibility code that added the additional missing functions that were added to math.h in C99. Since older msvc versions are C89 compliant they are missing many functions that were added in C99. However some of these functions aren't actually missing they were just added to the header using a different name (often with an '_' prefix). So if you know where these functions are you can make them usable in a C99 way.

So here is some code that can be added under a normal math.h include to add missing C99 functions. Not all of them are here and those that are missing are identified with a simple comment. But many of the commonly used ones are provided so hopefully this may be useful for someone.

#if _MSC_VER > 1800
// MSVC 11 or earlier does not define a C99 compliant math.h header.
// Missing functions are included here for compatibility.
#include 
static __inline double acosh(double x){
    return log(x + sqrt((x * x) - 1.0));
}
static __inline float acoshf(float x){
    return logf(x + sqrtf((x * x) - 1.0f));
}
#   define acoshl(x) acosh(x)
static __inline double asinh(double x){
    return log(x + sqrt((x * x) + 1.0));
}
static __inline float asinhf(float x){
    return logf(x + sqrtf((x * x) + 1.0f));
}
#   define asinhl(x) asinh(x)
static __inline double atanh(double x){
    return (log(1.0 + x) - log(1.0 - x)) / 2;
}
static __inline float atanhf(float x){
    return (logf(1.0f + x) - logf(1.0f - x)) / 2.0f;
}
#define atanhl(x) atanh(x)
static __inline double cbrt(double x){
    return (x > 0.0) ? pow(x, 1.0 / 3.0) : -pow(-x, 1.0 / 3.0);
}
static __inline float cbrtf(float x){
    return (x > 0.0f) ? powf(x, 1.0f / 3.0f) : -powf(-x, 1.0f / 3.0f);
}
#define cbrtl(x) cbrt(x)
#define copysign(x,s) _copysign(x,s)
#define copysignf(x,s) _copysign(x,s)
#define copysignl(x,s) _copysignl(x,s)
static __inline double erf(double x){
    double a1 = 0.254829592, a2 = -0.284496736, a3 = 1.421413741;
    double a4 = -1.453152027, a5 = 1.061405429, p = 0.3275911;
    double t, y;
    int sign = (x >= 0) ? 1 : -1;
    x = fabs(x);
    t = 1.0 / (1.0 + p*x);
    y = 1.0 - (((((a5 * t + a4 ) * t) + a3) * t + a2) * t + a1) * t * exp(-x * x);
    return sign*y;
}
static __inline float erff(float x){
    return erf((float)x);
}
#define erfl(x) erf(x)
// erfc
static __inline double exp2(double x){
    return pow(2.0, x);
}
static __inline float exp2f(float x){
    return powf(2.0f, x);
}
#define exp2l(x) exp2(x)
static __inline double expm1(double x){
    if(fabs(x) < 1e-5)
        return x + 0.5 * x * x;
    else
        return exp(x) - 1.0;
}
static __inline float expm1f(float x){
    if(fabsf(x) < 1e-5f)
        return x + 0.5f * x * x;
    else
        return expf(x) - 1.0f;
}
#define expm1l(x) expm1(x)
static __inline double fdim(double x, double y){
    return (x > y) ? x - y : 0.0;
}
static __inline float fdimf(float x, float y){
    return (x > y) ? x - y : 0.0f;
}
#define fdiml(x,y) fdim(x,y)
static __inline double fma(double x, double y, double z){
    return ((x * y) + z);
}
static __inline float fmaf(float x, float y, float z){
    return ((x * y) + z);
}
#define fmal(x,y,z) fma(x,y,z)
static __inline double fmax(double x, double y){
    return (x > y) ? x : y;
}
static __inline float fmaxf(float x, float y){
    return (x > y) ? x : y;
}
#define fmaxl(x,y) fmax(x,y)
static __inline double fmin(double x, double y){
    return (x < y) ? x : y;
}
static __inline float fminf(float x, float y){
    return (x < y) ? x : y;
}
#define fminl(x,y) fmin(x,y)
#ifndef _HUGE_ENUF
#    define _HUGE_ENUF 1e+300
#endif   
#define INFINITY   ((float)(_HUGE_ENUF * _HUGE_ENUF))  /* causes warning C4756: overflow in constant arithmetic (by design) */
#define NAN        ((float)(INFINITY * 0.0F))
#define FP_INFINITE  1
#define FP_NAN       2
#define FP_NORMAL    (-1)
#define FP_SUBNORMAL (-2)
#define FP_ZERO      0
#define fpclassify(x) ((_fpclass(x)==_FPCLASS_SNAN)?FP_NAN:((_fpclass(x)==_FPCLASS_QNAN)?FP_NAN:((_fpclass(x)==_FPCLASS_QNAN)?FP_NAN: \
 ((_fpclass(x)==_FPCLASS_NINF)?FP_INFINITE:((_fpclass(x)==_FPCLASS_PINF)?FP_INFINITE: \
 ((_fpclass(x)==_FPCLASS_NN)?FP_NORMAL:((_fpclass(x)==_FPCLASS_PN)?FP_NORMAL: \
 ((_fpclass(x)==_FPCLASS_ND)?FP_SUBNORMAL:((_fpclass(x)==_FPCLASS_PD)?FP_SUBNORMAL: \
 FP_ZERO)))))))))
#define hypot(x,y) _hypot(x,y)
#define hypotf(x,y) _hypotf(x,y)
 // ilogb
#define isfinite(x) _finite(x)
#define isnan(x) (!!_isnan(x))
#define isinf(x) (!_finite(x) && !_isnan(x))
#define isnormal(x) ((_fpclass(x) == _FPCLASS_NN) || (_fpclass(x) == _FPCLASS_PN))
#define isgreater(x,y)      ((x) > (y))
#define isgreaterequal(x,y) ((x) >= (y))
#define isless(x,y)         ((x) < (y))
#define islessequal(x,y)    ((x) <= (y))
#define islessgreater(x,y)  (((x) < (y)) || ((x) > (y)))
#define isunordered(x,y)    (_isnan(x) || _isnan(y))
#define j0(x) _j0(x)
#define j1(x) _j1(x)
#define jn(x,y) _jn(x,y)
// lgamma
static __inline double log1p(double x){
    if(fabs(x) > 1e-4){
        return log(1.0 + x);
    }
    return (-0.5 * x + 1.0) * x;
}
static __inline float log1pf(float x){
    if(fabsf(x) > 1e-4f){
        return logf(1.0f + x);
    }
    return (-0.5f * x + 1.0f) * x;
}
#define log1pl(x) log1p(x)
static __inline double log2(double x) {
    return log(x) * M_LOG2E;
}
static __inline float log2f(float x) {
    return logf(x) * (float)M_LOG2E;
}
#define log2l(x) log2(x)
#define logb(x) _logb(x)
#define logbf(x) _logb(x)
#define logbl(x) _logb(x)
// nearbyint
#define nextafter(x,y) _nextafter(x,y)
#define nextafterf(x,y) _nextafter(x,y)
// nexttoward
static __inline double rint(double x){
    const double two_to_52 = 4.5035996273704960e+15;
    double fa = fabs(x);
    if(fa >= two_to_52){
        return x;
    } else{
        return copysign(two_to_52 + fa - two_to_52, x);
    }
}
static __inline float rintf(float x){
    const double two_to_52 = 4.5035996273704960e+15f;
    double fa = fabsf(x);
    if(fa >= two_to_52){
        return x;
    } else{
        return copysignf(two_to_52 + fa - two_to_52, x);
    }
}
#define rintl(x) rint(x)
static __inline double remainder(double x, double y){
    return (x - ( rint(x / y) * y ));
}
static __inline float remainderf(float x, float y){
    return (x - ( rintf(x / y) * y ));
}

#define remainderl(x) remainder(x)
static __inline double remquo(double x, double y, int* q){
    double d = rint(x / y);
    q = (int)d;
    return (x - (d * y));
}
static __inline float remquof(float x, float y, int* q){
    float f = rintf(x / y);
    q = (int)f;
    return (x - (f * y));
}
#define remquo(x) remquo(x)
static __inline double round(double x){ return ((x > 0.0) ? floor(x + 0.5) : ceil(x - 0.5)); } static __inline float roundf(float x){ return ((x > 0.0f) ? floorf(x + 0.5f) : ceilf(x - 0.5f)); } #define roundl(x) round(x) // scalbn #define signbit(x) (_copysign(1.0, x) < 0) // tgamma static __inline double trunc(double x){ return (x > 0.0) ? floor(x) : ceil(x); } static __inline float truncf(float x){ return (x > 0.0f) ? floorf(x) : ceilf(x); } #define truncl(x) trunc(x) #define y0(x) _y0(x) #define y1(x) _y1(x) #define yn(x,y) _yn(x,y) static __inline long lrint(double x){ return (long)rint(x); } static __inline long lrintf(float x){ return (long)rintf(x); } define lrintl(x) lrint(x) static __inline long lround(double x){ return (long)round(x); } static __inline long lroundf(float x){ return (long)roundf(x); } #define lroundl(x) lround(x) static __inline long long llrint(double x){ return (long long)rint(x); } static __inline long long llrintf(float x){ return (long long)rintf(x); } #define llrintl(x) llrint(x) static __inline long long llround(double x){ return (long long)round(x); } static __inline long long llroundf(float x){ return (long long)roundf(x); } #define llroundl(x) llround(x) #endif

No comments:

Post a comment